If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2-432=0
a = 2; b = 0; c = -432;
Δ = b2-4ac
Δ = 02-4·2·(-432)
Δ = 3456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3456}=\sqrt{576*6}=\sqrt{576}*\sqrt{6}=24\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{6}}{2*2}=\frac{0-24\sqrt{6}}{4} =-\frac{24\sqrt{6}}{4} =-6\sqrt{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{6}}{2*2}=\frac{0+24\sqrt{6}}{4} =\frac{24\sqrt{6}}{4} =6\sqrt{6} $
| (X-8)(x-8)+(x-8)=-18 | | 120x+150+8x+9+20x=285 | | 2x=5x-22 | | 12-v/10=-13 | | -3(v+9)=2v+31 | | (x+10)+x=2950 | | 2x-18+7x=3(3x−6) | | 4a+16=144 | | 2(x-4)=4(x+7) | | 7h-1/2=201/2 | | 12=6b+12 | | 14+6r=5-3r | | 81+36x=32x+16+64 | | 10(x+5)=55 | | 20x-40=360 | | 4(a+4)=12² | | 4(12+4)=a² | | -99+3x=89 | | 3.22-7y=10y-1.89 | | 10(x-2=-20 | | 5u-4u=15 | | 1/7x-6=8(11-3) | | 28x+26=(x+3)(x-2) | | 10x-(6x+10)=30 | | 2h-h=12 | | 10(y+10)=7² | | 0.5(10–4s)=3s+10 | | 7(y+7)=10² | | 15s-11s=16 | | -3x+27+12x=9 | | 3x2+6x-12=0 | | 8s+2s=-90 |